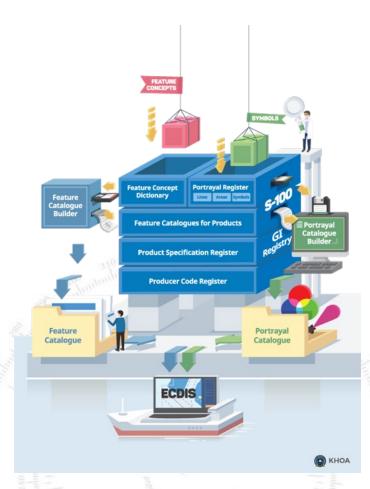
S-100: A Brief Introduction

Julia Powell

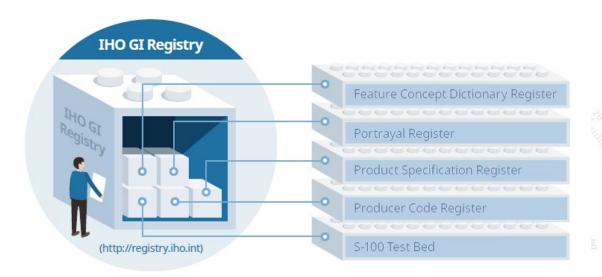
Chief, Navigation Services Division IHO S-100 Working Group Chair

S-100 – the IHO building blocks

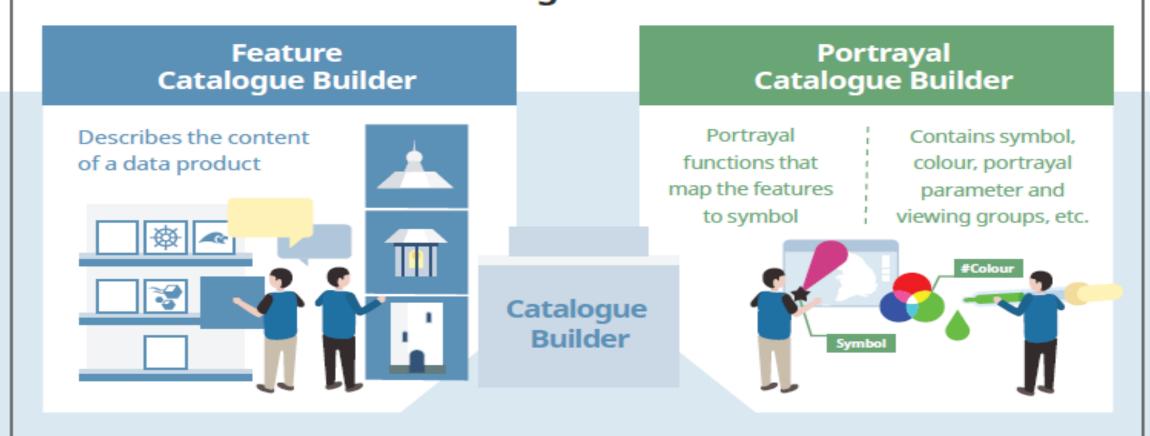
• Provides the data framework for the development of the next generation Electronic Navigational Charting products, as well as other digital products required by the hydrographic, maritime and GIS communities



Who is developing S-100 product specifications


What does S-100 mean for the Maritime Community?

- Leads to a global consistency of products
- Specifies encoding formats based on product type
 - ISO 8211
 - S-101 ENCs
 - HDF5
 - S-102 Bathymetry
 - S-111 Surface Currents
 - S-104 Water Level Information
 - S-412 Gridded Weather Information
 - GML
 - S-412 Vector Weather Information
 - S-122 Marine Protected Areas
- Moves to machine readable catalog mechanism
 - XML Based Catalogues


S-100 Backbone – Geospatial Information Registry

- Contains a collection of harmonized information divided into a series of registers
 - Feature Concept Dictionary subdivided into different domains
 - Hydro
 - IALA
 - WMO
 - IEC
 - Portrayal Registers

S-100 Backbone – Catalogue Builders

Catalogue Builder

S-100 Based Feature Catalogues

- Machine Readable .xml catalogue
- Binds features and attributes
- Ties in spatial primitives Point, Curve and Surface.

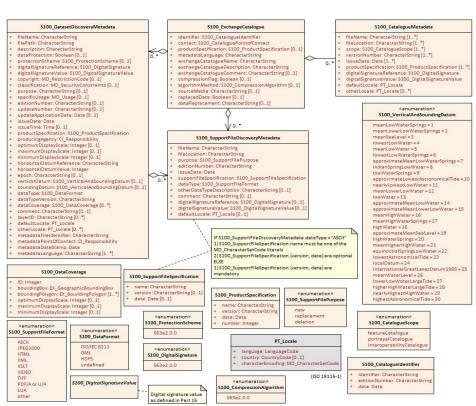
```
<S100FC:S100_FC_SimpleAttributes>
- <S100FC:S100_FC_SimpleAttribute>
     <S100FC:name>Application Profile</S100FC:name>
     <S100FC:definition>name of an application profile that can be used with the online resource (ISO 19115)</S100FC:definition>
      <S100FC:code>applicationProfile</S100FC:code>
      <S100FC:alias>APPPRF</S100FC:alias>
     <S100FC:valueType>text</S100FC:valueType>
  </S100FC:S100_FC_SimpleAttribute>
- <S100FC:S100_FC_SimpleAttribute>
      <S100FC:name>Beacon shape</S100FC:name>
     <S100FC:definition>The shape a beacon exhibits</S100FC:definition>
      <S100FC:code>beaconShape</S100FC:code>
     <S100FC:alias>BCNSHP</S100FC:alias>
      <S100FC:valueType>enumeration</S100FC:valueType>
    - <S100FC:listedValues>
       - <S100FC:listedValue>
            <S100FC:label>Stake, Pole, Perch, Post</S100FC:label>
             <C100EC: definitions An alangated wood or motal pola, driven into the ground or coahed, which corves as a navigational aid or a</p>
```

S-100 Based Portrayal Catalogues

- Machine Readable set of symbols and portrayal rules
- S-100 defines two types of portrayal mechanisms
 - LUA used for S-101 portrayal and best for portrayal rules that need to use external conditions to generate the portrayal (ship's draft)
 - XSLT simplified rules based on XML style sheets
- Navigation Systems MUST implement both

S-100 Discovery Metadata – Information Exchange

- Implemented utilizing XML exchange catalogues
- Contains:
 - Metadata about the overall exchange catalogue
 - Metadata about the individual datasets
 - Metadata about the support files that make up the package
- At the S-100 level most everything is optional
 - Restrictions may occur at the product specification level
 - Not every specification uses every field


Discovery for Dissemination

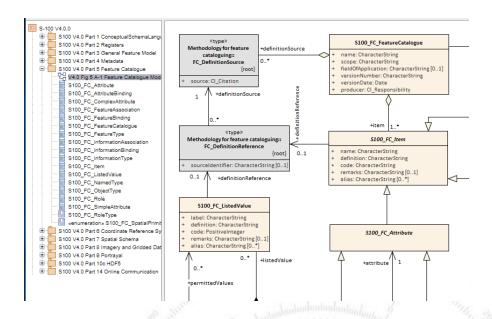
Building out a central metadata database to handle the dataset

metadata

XML allows for discovery:

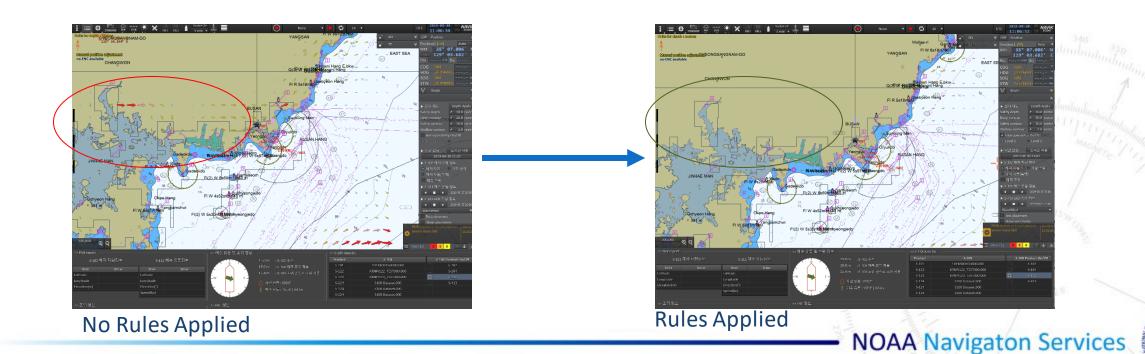
- When new data is released
- Where the data is stored
- Where the data is geographically
- What type of data it is
- Who produced the data

What is contained in S-100


- 15 Different Parts
- Defines
 - Register structure and management
 - Defining the General Feature Model
 - Modelling the real world for machines
 - Metadata
 - Feature Catalogues
 - Coordinate Reference Systems
 - Spatial otherwise known as geometry
 - Imagery and Gridded Data
 - Portrayal Mechanisms
 - Data Encoding
 - Scripting Language
 - Online Communication
 - Data Protection

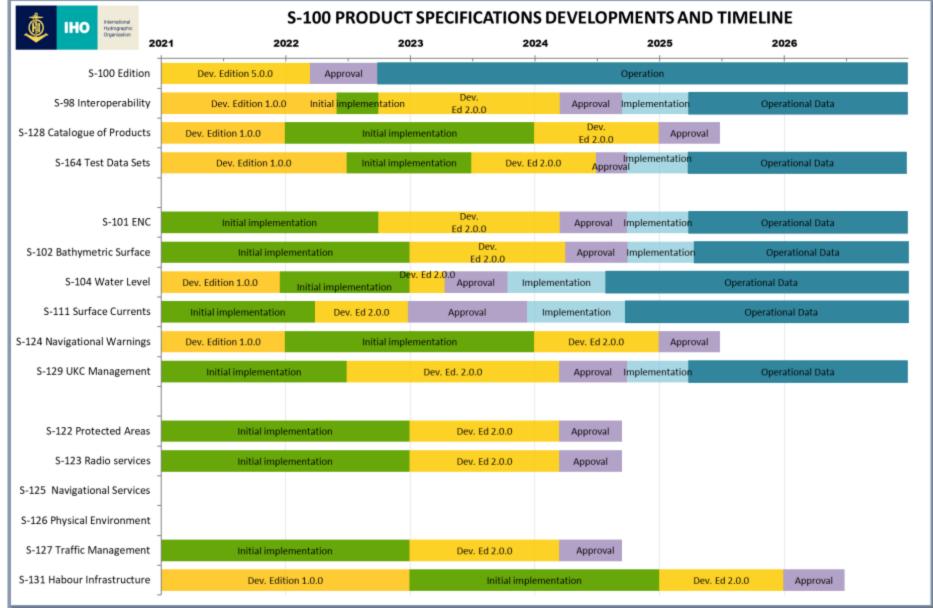
Conceptual Schema Language	S-100 Part 1
Management of IHO Geospatial Information Registers	S-100 Part 2
Feature Concept Dictionary Registers	S-100 Part 2a
Portrayal Register	S-100 Part 2b
General Feature Model and Rules for Application Schema	S-100 Part 3
Metadata	S-100 Part 4a
Metadata for Imagery and Gridded Data	S-100 Part 4b
Metadata – Data Quality	S-100 Part4c
Feature Catalogue	S-100 Part 5
Coordinate Reference Systems	S-100 Part 6
SpatialSchema	S-100 Part 7
Imagery and Gridded Data	S-100 Part 8
Portrayal	S-100 Part 9
Portrayal (Lua)	S-100 Part 9a
Encoding Formats	S-100 Part 10
ISO/IEC 8211 Encoding	S-100 Part 10a
GML Encoding	S-100 Part 10b
HDF5 Encoding	S-100 Part 10c
Product Specifications	S-100 Part 11
S-100 Maintenance Procedures	S-100 Part 12
S-100 Scripting Language	S-100 Part 13
Online Communication Exchange	S-100 Part 14
Encryption and Data Protection	S-100 Part 15
	/

Where do I find information?


- http://s100.iho.int/S100/
 - Links to the latest edition of S-100
 - S-100 Schemas (stored on Github)
 - S-100 UML models
 - Downloadable via Github
 - HTML version

Туре	Description/Link	Edition/Date	Comment
P	S-100 Edition 4.0.0 Schema packages - Readme	November 2018	See below
XML	S-100 Edition 4.0.0 Schema packages	November 2018	See Readme - above
	S-100 UML Model	April 2017	S-100 Github - download
	S-100 UML Model - HTML Version	September 2018	HTML version of the UML models
XML	S-100 Schemas	February 2018	S-100 Github
P	S-100 Master Plan Document	(June 2015)	

S-98 – S-100 Interoperability for Navigation Systems


- Framework for capturing interoperability rules for use in ECDIS
- Machine readable mechanism for rules
- Harmonized graphical presentations of S-100 data products

What is the S100WG focusing on now?

- Finalizing Edition 5.0.0 of S-100
 - Improved Discovery Metadata
 - Encryption
 - Real-Time information
- Finalizing Edition 1.0.0 of S-98
 - Allows for tide adjustment of data on an ECDIS

The S-100 timeline;

- to be maintained by the IHO Secretariat,
- version controlled Gantt Diagram,
- updated and reported annually to the IHO Council.

Reference: C4/18,


20 and 22

Key Takeaways

- Standards are the building blocks to Precision Navigation
 - Harmonization of data
 - Improved interoperability
 - But They do take time
- If data producers move to leveraging consensus based standards it can lead to lower implementation costs for the manufacturer
 - Can lead to lower cost for the consumer
 - Can lead to increased uptake of the product

The World of S-100

В КНОА